Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepisi: TexHiuHi Hayku

UDC 004.415.2
DOI https://doi.org/10.32838/2663-5941/2020.4/15

Oleshchenko L.M.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute

2

Lysenko O.0.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute

29

SOFTWARE METHOD FOR CLUSTERING SOFTWARE
TESTING REPORTS USING KNN ALGORITHM

The article is devoted to the development and sofiware implementation of a method for analyzing the results of
software testing using the KNN algorithm. Software developers are trying to avoid manual product testing in order
to reduce the risk of human factors and reduce the cost of testing. The average error analysis time after testing for
500 “failed” tests can be up to 24 hours. IT companies need automation of error analysis after software testing to
provide the customer with a complete understanding of what s going on in the project with a detailed description of
what is already working and needs refinement. This is very difficult to do manually, especially when the project is
very large and runs more than a thousand tests. There is a need to develop a software system for automated analysis
of software test results, which will reduce the time of error analysis and will allow view the status of tests in real
time. Existing machine learning methods that can be used to analyze software test results are analyzed. The choice
of the most appropriate method of machine learning for this task, namely k-nearest neighbors (KNN), is grounded.
On the basis of KNN a web application is created for automatic analysis of software testing results. The architecture
of the software system is implemented in the form of microservices. The basic idea of the proposed method is that
the stack path is used as the data to be clustered, this part contains information about the cause of the “drop” of the
test. The proposed method makes it possible to automate the error analysis process, reducing the time and amount
of human resources required to analyze software test results. The article compares the results of clustering methods
of KNN, Support Vector, and Naive Bayes to automatically analyze software test results for 100, 200, 500, and
1000 failed tests. The automatic analysis of results is compared with the manual one. When studying the results
of comparing automatic error analysis of software with 1000 failed tests, KNN method shows an accuracy
of 0.982, which is the most accurate result among the clustering methods considered. When analyzing 150 failed
tests, the algorithm showed a result 12 times faster than manual analysis. Thus, it is shown, that the proposed
software method is effective.

Key words: software testing, machine learning methods, test case, stack trace, clustering, KNN algorithm,
Elasticsearch, TF, IDF.

Problem statement. Testing is one automated analysis of software test results, which

of the key stages of software development.
Analyzing developed software requires first-class
testers, their constant training and motivation,
which is a big problem for small and medium-sized
companies. Software developers are trying to avoid
manual product testing in order to reduce the risk
of human factors and reduce the cost of testing.
The average error analysis time after auto-testing
for 500 “failed” tests can be up to 24 hours. IT
companies need automation of error analysis
after software testing to provide the customer
with a complete picture of what’s going on in
the project with a detailed description of what is
already working and needs refinement. This is very
difficult to do manually, especially when the project
is very large and runs more than a thousand tests.
There is a need to develop a software system for

106 Tom 31 (70) N2 4 2020

will reduce the time of error analysis and will allow
view the status of tests in real time.

Related research. In previous works clustering
methods: Naive Bayes method, Support Vector
Ma-chines method and k-nearest neighbors (KNN)
algorithm are analyzed [1]. This study shows that
Naive Bayes and Support Vector Machines methods
are complex to implement, have less accuracy for
large datasets than kNN, but have a higher clustering
rate [2; 3].

The main goal of the article is to automate
the process of analyzing the results of software
testing, which means reducing human intervention in
this process, the main requirement for the selection
of the algorithm selected accuracy. The running time
of the algorithm was not considered to be the main
metric for selecting the algorithm, since using any

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

of these algorithms in general will greatly reduce
the time for testing analysis. For this reason, the KNN
algorithm was chosen as the basis for its simplest
implementation and highest accuracy on large
volumes of data. The first step of the algorithm is to
specify the number k of nearest neighbors.

Presentation of the main research material. In
the second step, there are k entries with a minimum
distance to the feature vector of the new object
(neighbor search). The distance calculation function
must comply with the following rules: d(x, y) > 0,
d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x);
d(x, z) < d(x, y) + d(y, z), provided that the points
X, ¥, z do not lie on a straight line, where x, y, z are
the vectors of the signs of the objects being compared.

For ordered attribute values, the Euclidean
distance is used [4]:

(1

where 7 is the number of attributes.
For row variables that cannot be ordered,
the difference function can be applied [4]:

dd (x, y)={

When finding the distance, they take into account
the importance of attributes, which is determined
subjectively by the expert or analyst, relying on
their own experience. In this case, when finding
the distance, each i-th square of the difference in
the sum is multiplied by a factor Z, .

0,x=y; 2

Lx#y.

Using KNN algorithm for clustering reports
of software testing

As the results of automated tests will be analyzed,
the result of performing these tests will be a stack
trace, which will contain messages about what is
wrong in the test [5]. In this research the results
of the Junit library for Java are used.

The first line of the stack track reports is the reason
for the “drop” of the test. Lines of stack trace show
the files in which the error occurred, followed by
errors that pop up at all levels of the abstraction
library used, and are usually identical in all automated
tests. Since the bulk of this test is identical for each
test, it is pointless to submit the entire stack path to
the algorithm input, so this will not bring the desired
result, so the first step would be to delete this duplicate
text. Thereafter, basic information will remain that is
unique to each test result. However, this will also not
be enough, since there are still “noises” that need to
be removed. The next step is to delete the date, which
will also prevent clustering, then lowering the entire
text to lowercase and removing punctuation marks.
Then we get a text that can be worked with.

After alot of repetitive code is gathered, we need to
collect frequency pointers, that is, how often specific
words are repeated in a certain category (Fig. 1). The
more tests, the more text that can be worked with will
be collected and thus the accuracy of the algorithm
will increase.

Once we have all these metrics, we move on to
the frequency response, this is the part where machine
learning happens and is called the TF-IDF metric.
This metric shows how often this word appears in

4 5 2 7 5
expected found
expected found

Service expected
AssertionError Invalid
Invalid expected
expected found
AssertionError Invalid found
Invalid .
AssertionError expected
AssertionError Invalid Service expected found

Fig. 1. Frequency error indicators

107

Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepisi: TexHiuHi Hayku

a document and how important it is to all documents
in the library.

TF (term frequency) is the ratio of the number
of occurrences of the selected word to the total number
of words in the document. Thus, the importance
of the word within the selected document is evaluated.

ni
ank
where 7, is the number of occurrences of the word
in the document and the denominator is the total
number of words in the document.

IDF (inverse document frequency) is the inversion
of the frequency with which a word occurs in

TF = 3)

a collection document. Using IDF reduces the weight
of commonly used words.

IDF =log —|D| “

ld ot]’

where |D| is number of collection documents;

|d,. D t,.| is the number of documents in which
the word occurs 7, (when n, T0).

The choice of the basis of the logarithm in the formula

(4) is irrelevant, since changing the basis will change

the weight of each word by a constant factor, the weight

ratio will remain unchanged. TF-IDF is the product

of two factors: TF and IDF. This frequency response will

help determine how important a word is for a particular

AssertionError

found

expected

Invalid

Bervice

Fig. 2. Graphical representation of the TF-IDF metric

pM* acted
Exp cte] RiAGmalan. i
L 3 l
1
Pragust bug 'Il
L]
1
- \
'_J"'\.
- %
- 5\ ——
-l'"-' \ -_—---—--l-"'--'.--_--
- r
P
- !
- [l
- Eystem sue
e i
S !
- j.' Ta invesiigaie
I
I
I b
' -
[}
I
i

N* excéptian

Fig. 3. Two-dimensional clustering of test results

108 Tom 31(70) N2 4 2020

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

document and how important it is in categorizing
a particular type of document.

We have all of these words that belong to different
categories of errors, such as Product Bug, System
Issue, or Automation Issue, and this categorization will
be done by a person at the beginning so that machine
learning understands this document, that is, this stature,
refers to specific reason for the “failure” of the test.

This information will be presented in vector form.
Analyzing text with machine learning algorithms means
converting all this large text into a mathematical vector
and this vector will be located in a multidimensional
space where each space will refer to a specific word.

Software implementation of the proposed
method

The developed software system enables:

— GitHub sign-up and sign-in;

— view real-time test execution;

— automatic clustering of test results;

— specify categories and subcategories for failed

— save up to 10 test runs;

— merge multiple launches into one;

— attach images, pieces of code to a specific test
result;

— edit failed test categories and subcategories;

— filtertestresultsby categories and subcategories;

— add, modify, delete a description of the test
results;

— adjust parameters for auto-analysis;

— display the results graphically.

The architecture of the software system is
implemented in the form of microservices. The whole

system is divided into client and server parts. The
client part includes services such as Logger, Agent,
Client. Client are API integrations. HTTP clients that
process HTTP request sending. Agent is a framework
integration. Special reporters / listeners who monitor
test events and cause events to be transmitted through
the client. Logger is an integration of logs that helps
to collect logs, associate it with a test code through
an agent, and send it to a server through a client.

Gateway is the main point of entry for application
services. This service is responsible for routing
requests for proper maintenance and load balancing.
The gateway contacts the service registry to get a list
of the actual services that are allowed to route traffic.

Registry is a tool that stores the actual list of running
services with added meta information. It checks
the status of each running service to ensure availability.

The API is responsible for handling agent inbound
requests and the user interface.

Authorization is a module that authorizes users
and creates / revokes user tokens. It supports various
types of authentication mechanisms:

— Basic Auth;

— GitHub Auth (OAuth2);

— LDAP Auth.

LDAP Authis an OAuth2 server that authorizes
the user using the mechanisms mentioned below
and creates an OAuth2 internal token that is used by
the user interface and the agent agent. There are two
types of tokens:

— UI (ending token);

— API is an endless token designed for use on
the agent side.

Gateway
./"_'“_.
= | Client
(Authori-\ b
\ zation / :
‘\H__ -
T
. - ﬂ“\,l
: - API
E .
5 ¢ k3
¥ ¥ # L ¥ v 1

\ Registry '

Fig. 4. Architecture of software

109

Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepisi: TexHiuHi Hayku

Table 1
Accuracy comparison of clustering methods
The number Support Naive
of “failed” KNN | Vector Machines| Bayes
tests method method
100 0.7483 0.7948 0.8126
200 0.8347 0.8589 0.7650
500 0.9078 0.8451 0.7607
1000 0.9820 0.9241 0.7520

The Analyzer stores an index of the project’s user
logs and provides the ability to search for that index
and used by the automatic analysis function.

Ul is the service responsible for the client-side
system. DB is the service responsible for the system
database. The developed software system works
with Java programming language and framework for
automation of JUnit testing. Developed system allows
using integration with bug-tracking systems such as
Jira, Trello, Bugzilla, Airbrake, ZenHub. The system
has the following structure of test organization levels:
Launch — Test Suite — Test Case — Test step. Launch
contains all test kits that were run on startup. Test
Suite is a set of test cases that are combined in that
they relate to one test module, functionality, priority,
or one type of test. Each test suite consists of more
than one test case and is often performed with a whole
“bundle” in the process of testing. Test Case formally
describes algorithm for testing a program, specially
designed to determine the occurrence of a specific
situation in a program, certain source data. Test
Step describe the steps to play the bug. The steps
are recommended to minimize, find the shortest way
to reproduce the error and describe in the steps, it
is important that they remain as clear as possible to
developers. The system allows to combine multiple
launches into one. If a project has a large number
of test kits, they are split into parts because they
cannot be in one particular startup. Once completed,
they can be combined into a single startup to represent

this data in dashboards and generate reports. Two
types of mergers are implemented: Linear and Deep.
If the user selects Line Merger, a new start is created.
The new startup contains elements of the startup
merge. The element levels remain the same as
in the beginner startup. Statistics is calculated as
the sum of the statistics of all merged launches. Initial
launches are removed from the system.

Conclusions. The main feature of researched
method comparison was accuracy and to reduce
time and human resources for analyzing the results
of software testing. The results of the comparison
of these methods can be seen in Table 1. As can
be seen from the table, the KNN method slightly
“loses” in the accuracy of the method of Support
Vector Machines on small on-fringes by an average
of 3—6%, but on the sets the 500-1000 KNN algorithm
shows 6-10% better results than the reference vector
method and 23-26% better results than Naive Bayes
method. A comparison is made with manual analysis
of “failed” tests and using machine learning methods
on a real project. The analysis of 150 tests was started,
the algorithm coped with this task in about 20 minutes,
and failed to automatically recognize only 9 tests, while
it took the person about 4 hours to read all the errors
and attribute them to categories. Thus, KNN algorithm
coped with this task 12 times faster than humans.

The article compares the results of clustering
methods of KNN, Support Vector, and Naive Bayes
to automatically analyze software test results for
100, 200, 500, and 1000 failed tests. The automatic
analysis of results is compared with the manual one.
When studying the results of comparing automatic
error analysis of software with 1000 failed tests,
KNN method shows an accuracy of 0.982, which
is the most accurate result among the clustering
methods considered. When analyzing 150 failed tests,
the algorithm showed a result 12 times faster than
manual analysis. Thus, it is shown that the proposed
software method is effective.

References:
1. Jain, A., Dubes, R. Algorithms for Clustering Data. Prentice Hall, IGI Global, 2012. Pp. 43-62.
2. Kaufman, L., Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis. MA: MIT Press,

2007. Pp. 215-266.

3. Bradley, P., Mangasarian, O., Street, W. Clustering via Concave Minimization. Advances in Neural Infor-
mation Processing Systems, vol. 9. MA: MIT Press, 1997. Pp. 368-374.

4. Jain, A., Dubes, R. Algorithms for Clustering Data. Prentice Hall, IGI Global, 2012, pp. 43—62.

5. Java stack trace, understanding and using for debug. URL: https://www.scalyr.com/blog/java-stack-trace-

-understanding/

110 Tom 31 (70) Ne 4 2020

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Outemenxo JI.M., JIncenko 0.0. IPOI'PAMHUM METO/I KJIACTEPU3AIIII 3BITIB
TECTYBAHHS TIPOT'PAMHOI'O 3ABE3TIEUEHHS 3 BUKOPUCTAHHSAM AJITOPUTMY KNN

Cmamms npucesauena po3pobyi ma 6npoea0NCEHHIO NPOZPAMHO20 Memooy OISl AHALI3Y pe3yIbmamie mec-
MYBAHHA NPOSPAMHO20 3a0e3neuents 3 sukopucmanuam ancopummy KNN. Pospobuuxu npoepamnozo 3abes-
NeYeHHs HaMA2alombCs YHUKAMU PYYHO20 MEeCY8aHHsA NPOSPAMHO20 3a0e3neyeHHs, Wod 3MeHWUMU PusuK
Jr00cvoKkUx paxmopie ma sumpamu na mecmygans. Cepeonill yac ananizy NOMUIOK Nicis mecmyeanus 0
500 «nesoanuxy mecmie modice cmanogumu 00 24 cooun. IT-komnanii nompebyroms agmomamuzayii ananizy
NOMUNOK RICJIA MEeChY8aHHA NPOSPAMHO20 3abe3neyeHHs, wob 3abe3neuumu 3aMOBHUK) NOBHY KAPMUHY MO20,
wo 8i00ysacmscs 8 NPOEKMI, 3 0EMANbHUM ONUCOM MO20, WO B8dce Npayroe i nompebye 000Npayto8aHHs.
Le 3pobumu dyoice 8axicKo 8pYUHY, 0COOMUBO KOIU NPOEKM OVICe BEIUKULL I NPOXOOUmb Oliblie MUcsyi mec-
mis. € HeoOXiOHiCMb PO3POOUMU NPOSPAMHY CUCHEM) OJisl ABMOMAMU308AHO20 AHANI3Y Pe3YIbIMamis mecmy-
BAHHA NPOSPAMHO20 3a6e3nedents, Wo CKOPOMUMs Yac aHaxizy NOMUIOK i 0acmb 3M02y NepeisiHymu cma-
myc mecmis y pexcumi peanvHozo yacy. lIpoananizosano Hasaeni mMemoou MAuUHHO20 HABYAHHS, AKI MOXCHA
BUKOPUCMOBY8AMU 0TI AHALI3Y PE3VILINAMIE MeCMySants npoepamHo2o 3abesneuents. OOIPYHmMosano sudip
HaUOLIbUL 8ION0GIOH020 MemOOdy MAUUHHO20 HABYAHHS O Yb020 3a60anHs, a came k-nearest neighbors
(KNN). Ha 6a3i KNN cmeopeno 6e6000amox 0Jisi a8MOoMamuyHo20 anaiizy pe3yivmamie mecmyeanus npo-
2pamuoeo 3abesneyenus. Apximekmypa npoepamuoi cucmemu peanizo8ana y euensaoi mikpocepsicie. Ocnosna
i0es 3anponoHo8ano02o0 memoody nous2de 8 momy, wjo stack trace 8UKOpUCMOBYEMbCA AK OAHUX 05 KAACMepU-
3ayii, Yy yacmuHa micmumao ingopmayiro npo NPUYUHY «NAOIHHSY mecnmy. 3anponoHO8aAHUI Memo0 0dE 3M02Y
asmomamu3yeamu npoyec aHanizy NOMUIOK, CKOPOUYIOUU YaC I KITbKICMb H0OCbKUX pecypCie, HeoOXiOHUX OIS
AHANIZY Pe3YIbMamie mecnyeants NPOSPAMHO20 3a0e3nedents. Y cmammi 3icmaeieni pesyibmamu Memooie
knacmepuszayii KNN, Support Vector ma Naive Bayes 01 asmomamuuno2o ananizy pe3yiomamis mecmyeanHs;
npoepamrozo 3abezneuenns oas 100, 200, 500 ma 1000 nesoanrux mecmie. AgmomamuyHuil aHaiiz pe3yioma-
Mig NOPIBHIOEMbCSL 3 PYUHUM. Y npoyeci 6usueHHs pe3yTbmamis NOPIGHAHHA ABMOMAMUYHO20 AHAI3Y NOMU-
JI0K npoepamrozo 3abesnevenns 3 1000 nesoanux mecmis memoo KNN noxazye mounicmo 0,982, wo € naii-
OinbUL MOUHUM PE3VTbMAMOM ceped PO32IAHYMUX Memooie kiacmepusayii. ¥ npoyeci ananizy 150 negdanux
mecmig i3 sukopucmanuam memody KNN ompumano pezyiomam y 12 pazie wieuouie, Hidc i3 BUKOPUCTHAHHAM
PYUHO20 aHAli3).

Knrouosi cnoea: mecmysanus npozpamno2o 3abe3neuents, Memoou MauuHH020 Ha8uanHs, test case, stack
trace, knacmepuzayis, areopumm KNN, Elasticsearch, TF, IDF.

111

